Annamaria Cucinotta

University of Parma
Information Engineering Department

Viale Parco Area delle Scienze 181/A
I-43124 Parma, Italy

 

tel. +39 0521 905765
fax +39 0521 905758
e-mail: annamaria.cucinotta@unipr.it

 

 

S. Selleri, L. Vincetti, A. Cucinotta

Componenti Ottici e Fotonici

Società Editrice Esculapio

Ottobre 2012

 

 
 

Componenti Fotonici - Photonic Devices

Componenti Fotonici 

 

Finalità
Il corso si propone di fornire le basi teoriche per lo studio della propagazione elettromagnetica a frequenze ottiche in strutture dielettriche guidanti, guide e fibre ottiche, necessarie per la comprensione del funzionamento dei moderni sistemi di telecomunicazione. Dispositivi di basilare importanza, come laser, amplificatori ottici, accoppiatori ottici e reticoli, saranno analizzati in dettaglio. Verranno illustrati nuovi approcci e strumenti di analisi e progetto nonché discusse le più importanti novità nel campo della fotonica e dell’optoelettronica.
 
Programma
• Lastra piana isotropa. • Fibra ottica. Apertura numerica, V-number, differenza percentuale di indice di rifrazione. Fibra step-index e i modi TE, TM, EH e HE. Fibra a debole guidaggio. I modi LP. Fattore di confinamento della potenza e dipendenza da V. Approssimazione gaussiana: definizione di spot size e mode field diameter. Espressione approssimata dello spot size normalizzato in funzione di V. Fibre graded index e matched cladding. • Attenuazione delle fibre ottiche. Cause intrinseche e cause estrinseche. Scattering di Rayleigh; perdite per micro- e macro-curvatura; assorbimento nell’ultravioletto e nell’infrarosso. Esempi di fibre commerciali. • Fenomeni di dispersione in fibra; dispersione cromatica. Fibre Dispersion Shifted (DSFs), Non-Zero Dispersion Shifted (NZDSFs), Fibre per la compensazione della dispersione (DCFs). Esempio di progetto di una fibra DCF. • Fibre ottiche plastiche: materiale, attenuazione, dimensioni del core e del cladding. • Meccanismi di amplificazione ottica. Population rate equations e sistemi a due, tre e quattro livelli. Equazioni di propagazione, coefficiente di guadagno e di assorbimento. • Amplificatori ottici in fibra drogata. Possibili configurazioni, schemi di pompaggio, guadagno, banda, cifra di rumore. Andamento delle grandezze negli amplificatori in fibra. • Amplificazione in banda C, L, S. Fibre silicate, tellurate e fluorurate drogate con erbio, neodimio, olmio e tulio. Laser in fibra. •Amplificatori ottici a semiconduttore - SOA. • LED e Laser a semiconduttore; schemi costitutivi e fisica del dispositivo. • Laser a semiconduttore singolo modo longitudinale; laser DFB e DBR. Laser tunabili. • Laser ad emissione verticale (VCSEL). Confronto con i laser tradizionali. Caratteristiche, prestazioni e applicazioni. • Processo di fotorivelazione. Assorbimento e trasparenza. Materiali e loro caratteristiche. • Tipi di fotodiodi. Prestazioni, rumore. • Componenti passivi. Accoppiatori e splitters. Wavelength Division Multiplexers and Demultiplexers (WDM MUXs/DEMUXs). Isolatori, Circolatori e Attenuatori. • Reticoli di Bragg in fibra ottica e guida dielettrica. Teoria dei modi accoppiati. Introduzione ed equazioni di riferimento. Applicazioni come specchi, selettori di lunghezza d’onda, per la compensazione di dispersione. • Accoppiatori direzionali in fibra e in ottica integrata. • Reticoli per riflessione, applicazione come demultiplexer e negli analizzatori di spettro. • Cavità Fabry-Perot. Interferometri. • Filtri interferometrici Mach-Zehnder. Divisori e star-couplers, multiplexer e demultiplexer. • Onde piane in mezzi anisotropi. Onda ordinaria e straordinaria. Dispositivi magneto-ottici, ritardatori di fase, polarizzatori, isolatori e circolatori. Applicazioni. • Modulatori ottici: ad elettroassorbimento, elettroottici e acustoottici. Applicazioni per l’elaborazione del segnale, switch ottici, convertitori di lunghezza d’onda. • Cristalli fotonici. Definizione e bande fotoniche proibite. Dispositivi basati sui cristalli fotonici: guide, giunzioni, curve, filtri, accoppiatori. • Fibre ottiche a cristallo fotonico e holey fibers. Definizione, tecnologie di fabbricazione, applicazioni nelle telecomunicazioni e prestazioni. • Coerenza di una sorgente; coerenza spaziale e temporale. • Metodi finiti; il metodo degli elementi finiti, differenze finite, mode matching.
 
Attività di esercitazione 
Sono previste esercitazioni di laboratorio (sia numerico che sperimentale).
 
Modalità d’esame
Orale
 
Testi consigliati

S. Selleri, L. Vincetti, A. Cucinotta, "Componenti ottici e fotonici ", Società Editrice Esculapio, 2012

D.K. Mynbaev, L.L. Scheiner, "Fiber-Optic Communications Technology“, Prentice Hall, 2001.
P. Bassi, G. Bellanca, G. Tartarini, "Propagazione ottica libera e guidata", Clueb, 1999.
J. M. Senior, “Optical Fiber Communications”, Prentice Hall, 1992.
 
 
 
 
 
Photonic Devices
 
  
Objectives of the course
The objective of the course is to give an understanding of fiber optic technology and its related devices for WDM telecommunication systems. New approaches and analysis tools will be provided as long as important novelty in the field of photonics and optoelectronics.
 
Course contents
 
• Simmetric slab.
• Optical fiber. Numerical aperture. V-number. Fractional refractive index difference. Step-index fiber. TE, TM, EH e HE guided modes. Weakly guiding fiber. LP guided modes. Power confinement factor and its dependence on V-number. Gaussian approximation: spot size and mode field diameter. Graded index and matched cladding fibers.
• Fiber trasmissive properties: attenuation. Intrinsic and extrinsic attenuation causes. Rayleigh scattering. Macro and micro-bending losses. Ultra violet and infra-red absorption. Data sheets of commercial fiber types.
• Fiber trasmissive properties: dispersione in fibra. Intermodal and Intramodal dispersion. Cromatic Dispersion. Dispersion Shifted Fibers (DSFs), Non-Zero Dispersion Shifted Fibers (NZDSFs), Dispersion Compensating Fibers (DCFs). Example of a DCF design.
• Plastic optical fibers: material, attenuation, core and del cladding diamaters.
• Optical amplification principles. Population rate equations. Four, three and two levels systems. Propagation rate equations. Absorption and gain coefficient.
• Rare earth doped fiber amplifies. Design, schemes, forward and backward pumping, gain, noise figure. Evolution of signals, pumps and ASE powers along the fiber.
• C, L, and S band optical amplification. Silicate, tellurite and florurate fibers. Fiber lasers.
• Semiconductor optical amplifiers.
• Light emitting diode (LED) e Laser. Designs and physical operation principles.
• Single longitudinal mode lasers. DFB e DBR. Tunable lasers..
• Vertical Cavity Surface Emitting Lasers (VCSELs) Performances and advantages.
• Receivers. Photodetectors.
• Photodiodes. PIN, Avalanches photodiodes. Noise sources.
• Passive Components. Couplers/splitters. Wavelength Division Multiplexers and Demultiplexers (WDM MUXs/DEMUXs). Isolators, Circulators and Attenuators.
• Bragg gratings in optical fiber and dielectric waveguide. Couple mode theory. Applications to reflectors, wavelength selectors, dispersion compensation, add-drop filters.
• Directional couplers in optical fiber and dielectrid waveguide.
• Reflection gratings. Optical spectrum analysers. Fabry-Perot cavity. Interferometers.
• Mach-Zehnder interferometer filters. Splitters and star-couplers, multiplexer and demultiplexer. • Plane waves in anisotropic media; ordinary and extraordinary waves. Magneto-optic devices, phase retarders, polarizers, isolators and circulators; applications.
• Optical modulators. Electroabsorption, electrooptic and acustooptic modulators.  Applications; optical switches, wavelength converters.
• Photonic crystals and band gap. Definition, technology and structures.
• Photonic crystal based devices: waveguides, junctions, curves, filters, couplers.
• Photonic crystal fibers and holey fibers. Definition, fabrication technology, applications in telecommunications; performances. Source coherence; spatial and temporal coherence.
• Finite Methods; the finite difference and the finite element method, the mode matching. 
 
Laboratory 
Student can attend labs for numerical simulations and experimental activity.
 
Assessment methods
Oral exam
 
 
Recommended readings
D.K. Mynbaev, L.L. Scheiner, "Fiber-Optic Communications Technology“, Prentice Hall, 2001.
P. Bassi, G. Bellanca, G. Tartarini, "Propagazione ottica libera e guidata" Clueb, 1999.
J. M. Senior, “Optical Fiber Communications”, Prentice Hall, 1992
 
 
Slides (Materiale Didattico)

 
 

 

 

 

 

 

 

http://youtu.be/nR0LmJbcUxU 

 

http://youtu.be/fXGBmExbumI